Estimation vs hypothesis testing

In the case of estimation, we ask a question about the value of a particular parameter.

In hypothesis testing the question is preceded by a statement concerning the population; the question then is whether this statement is true or false.

Hypotheses

In statistical theory a hypothesis is a supposition about the population.

A statement that a certain population parameter is equal to a given value. This hypothesis is called **the null hypothesis**: H₀

Since the null hypothesis is a testable proposition, there must exist a counterproposition to it.

The counterproposition is called **the alternative hypothesis**: H_1 .

1. State the null hypothesis and the alternative hypothesis, e.g.

$$
H_0: \mu = \mu_0
$$

$$
H_1: \mu \neq \mu_0
$$

In our example we want to test if mean is still 200 ml, so $H_0: \mu = 200$ $H_1: \mu \neq 200$

2. Choose the level of significance and determine **the rejection region**. Significance level is denoted α . Usually it is set equal to 5% (or 1%, sometimes 10%).

For our example let's choose $\alpha = 5\%$.

Rejection region

3. Draw a sample and calculate the value of the test statistic.

$$
z = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}
$$

$$
z = \frac{202.5 - 200}{5} \sqrt{16} = 2
$$

- 4. Reach a conclusion:
- if the sample statistic falls into the rejection region $|Z| \geq Z_{\alpha}$
- reject the null hypothesis

or

• if the sample statistic falls outside the rejection region $|Z|$ < Z_{α}

state that the sample does not provide evidence against the null hypothesis so there is no reason to reject it.

For our example:

 $z_{\alpha} = 1.96$

 $z = 2$

 $|z| \geq z_{\alpha}$

so we reject null hypothesis at 5% significance level, and conclude the mean is not equal to 200 ml.

Two tailed test

*H*₀: $\mu = \mu_0$
*H*₁: $\mu \neq \mu_0$

If $|z| \geq z_\alpha$ reject the null hypothesis

One tailed test

*H*₀: $\mu = \mu_0$
*H*₁: $\mu > \mu_0$

If $z \geq z_\alpha$ reject the null hypothesis

One tailed test

*H*₀: $\mu = \mu_0$
*H*₁: $\mu < \mu_0$

$$
If z \le -z_{\alpha}
$$

reject the null hypothesis

Two tailed vs one tailed tests

Parametric tests

Tests for one parameter

- Mean
- Proportion
- Variance

Tests for two parameters

- Two means
- Two proportions
- Two variances

Test for population mean

Model 1

Normally distributed population with known variance σ^2

$$
H_0: \mu = \mu_0
$$

\n
$$
H_1: \mu \neq \mu_0 \text{ or } H_1: \mu > \mu_0 \text{ or } H_1: \mu < \mu_0
$$

\n
$$
z = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}
$$

 z_{α} from Normal distribution

Test for population mean

Model 2 Population with unknown variance σ^2 , big sample

$$
H_0: \mu = \mu_0
$$

\n
$$
H_1: \mu \neq \mu_0 \text{ or } H_1: \mu > \mu_0 \text{ or } H_1: \mu < \mu_0
$$

\n
$$
z = \frac{\bar{x} - \mu_0}{\hat{s}} \sqrt{n}
$$

 z_{α} from Normal distribution

Test for population mean

Model 3

Normally distributed population with unknown variance σ^2 , small sample

$$
H_0: \mu = \mu_0
$$

\n
$$
H_1: \mu \neq \mu_0 \text{ or } H_1: \mu > \mu_0 \text{ or } H_1: \mu < \mu_0
$$

\n
$$
t = \frac{\bar{x} - \mu_0}{\hat{s}} \sqrt{n}
$$

 t_{α} from student t distribution, $v = n - 1$

Test for population proportion

Big sample

 $H_0: p = p_0$ $H_1: p \neq p_0$ or $H_1: p > p_0$ or $H_1: p < p_0$

$$
z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}
$$

z_{α} from Normal distribution

Test for population variance

Normally distributed population with unknown variance σ^2

$$
H_0: \sigma^2 = \sigma_0^2
$$

\n
$$
H_1: \sigma^2 \neq \sigma_0^2 \text{ or } \sigma^2 > \sigma_0^2 \text{ or } \sigma^2 < \sigma_0^2
$$

\n
$$
\chi^2 = \frac{(n-1)\hat{s}^2}{\sigma_0^2}
$$

 χ^2_{α} from χ^2 distribution, $\nu=n-1$

Errors

Error type I: we reject null hypothesis while it is true. Probability of this error is α , the significance level.

Error type II: we don't reject null hypothesis while it is false. Probability of this error is β

Power of a test: probability of rejecting null hypothesis while it is false Power of a test = $1 - \beta$